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Stochastic learning in a neural network with adapting synapses
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We consider a neural network with adapting synapses whose dynamics can be analytically computed. The
model is made ofN neurons and each of them is connected toK input neurons chosen at random in the
network. The synapses aren-state variables that evolve in time according to stochastic learning rules; a parallel
stochastic dynamics is assumed for neurons. Since the network maintains the same dynamics whether it is
engaged in computation or in learning new memories, a very low probability of synaptic transitions is assumed.
In the limit N→` with K large and finite, the correlations of neurons and synapses can be neglected and the
dynamics can be analytically calculated by flow equations for the macroscopic parameters of the system.
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I. INTRODUCTION

In the dynamics of attractor neural networks~ANNs! two
processes take place: the time evolution of the neuron s
and the change in strength of the connections~synapses! be-
tween neurons. Most of the prior research has focused s
rately on the first dynamical process~retrieval of learned
patterns! or the other~learning of patterns! @1#. In this work
we deal with the problem of building up models where ne
rons and synapses maintain the same dynamics whethe
network is engaged in computation or in learning n
memories; the two stages~computation and learning! differ
only for the presence of external stimuli. This problem
important for the description of theshort termmemory in the
human brain~see, e.g.,@2#! and has been studied mainly
the context of Hebbian learning with a decay term@3–5#:
Shinomoto@3# presented a rule for the synaptic modificati
whose stable solutions are the Hopfield couplings@6#; Dong
and Hopfield@4# considered analog neurons in a determin
tic network described by a system of differential equatio
and applied their model to the problem of the developm
of synaptic connections in the visual cortex; D’Autilia an
Guerra@5# studied an ANN with adapting synapses in ord
to model conditioned reflex and rhythm recognition.

A very interesting approach to the coupled dynamics
fast spins and slow interactions, in a fully connected n
work, has been proposed by Coolen, Penney, and S
rington @7#; in their model the interactions are assumed
change adiabatically and the thermodynamic equilibri
corresponds to a system of averaged replicas, where the
lica number represents the ratio of the temperatures of
spin and interaction systems. It is shown that the influenc
the spins on the interaction dynamics can change the ord
the phase transitions in the model. Moreover the case
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‡Electronic address: guido@iesi.ba.cnr.it
§Electronic address: sebino@iesi.ba.cnr.it
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finite and negative replica number~describing an overfrus-
trated system! has been studied by Dotsenko, Franz, a
Mézard @8#. Caticha considered a spin model where the d
order evolves on a time scale intermediate between the
nealed and quenched behaviors@9#.

We consider here an ANN with asymmetric adapting sy
apses whose dynamics consists of a stochastic lear
mechanism@10,11#; in particular we refer to Amit and Fus
@11# for a discussion on the possible sources of stochasti
in the synaptic learning. We present a dynamical theory
terms of deterministic flow equations for macroscopic ord
parameters, which holds if the connections are strongly
luted. For quenched synapses the dynamical approach is
act in the case of strong dilution@12#; it may be mentioned,
in passing, that recently Coolen and Sherrington descri
dynamically the fully connected Hopfield model@13#.

Our model is made ofN neurons~Ising spins! si(t)P
$21,1%, i 51, . . . ,N. For each neuronsi , K input sites
j 1( i ), . . . ,j K( i ) are chosen at random among theN sites,
and NK synaptic interactionsJi j (t) are introduced. We as
sume that the synapses aren-state variablesJi j P$1,(n
23)/(n21), . . . ,21%. Let us calla the index identifying
the different values of the synapses, so thata51 impliesJ
51 anda5n implies J521; in general

Ja5
n1122a

n21
, a51, . . . ,n. ~1!

The dynamical rule for the evolution of the synapses is
sumed as follows. Each synaptic variableJi j connectingsi
with one of its K input neurons grows by one unit 2/(n
21), i.e.,Ja→Ja21, with probabilityq if the productsisj of
the spins connected byJi j is positive; if such a product is
negative the synapse decreases by one unit (Ja→Ja11) with
the same probability. If a synapse is at one of the extre
limits and should be pushed off, its value remains u
changed.

A parallel stochastic dynamics with inverse temperat
b5T21 is assumed for neurons, where the local field act
on neuronsi is given by
4567 © 1997 The American Physical Society
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hi~ t !5(
j

Ji j ~ t !sj~ t !1Hi~ t !; ~2!

the sum is taken over theK input neurons and externa
stimuli are represented by local magnetic fieldsHi . There-
fore the rules for the parallel dynamics in our model are

si~ t11!5sgnS 1

2
1

1

2
tanh@bhi~ t !#2h i D , ~3!

Ji j ~ t11!5Ji j ~ t !1
2

n21
si~ t !sj~ t !u~q2h i j !

3uS 12UJi j ~ t !1
2

n21
si~ t !sj~ t !U D , ~4!

whereh i andh i j are random numbers in@0,1#, andu is the
Heaviside function.

As to the value ofq, we assumeq5O(1/K). This choice
deserves a comment. It is known@10,11# that if q is order
AlnK/K or greater, then it takes only one iteration to impr
the pattern corresponding to a given neuronic state; since
synapses maintain the same dynamics during the retriev
a previously learned pattern, such an occurrence would
stroy the associative capability of the network; therefore
the following we assume thatq is of order 1/K.

Let us first describe qualitatively the behavior of o
model in the absence of external stimuli. At low temperat
the dynamics drives the system towards one of the 2N con-
figurations satisfyingJi j 5sisj ~separable configurations!. If
the initial configurations of neurons and synapses are c
pletely disordered, then at late times the network conver
to one state chosen among the separable configuration
other words the network spontaneously breaks the symm
among the separable configurations~a similar spontaneou
symmetry breaking is discussed in@4#!. If, on the other hand,
the initial conditions are sufficiently polarized with respect
a given separable configuration, we expect the network
converge to that configuration.

Our aim is to describe macroscopically the evolution
the system by flow equations for the macroscopic parame
describing the state of neurons and synapses. Let us
Hi50 ~no external stimuli on the network! and consider an
arbitrary pattern$j i% for the neurons. We introduce the var
abless̃ i5j isi and J̃ i j 5Ji j j ij j , which will be useful to mea-
sure the degree of polarization of neurons and synapses
respect to the pattern$j i%. The statistical ensemble we de
with consists of all the histories of the network with th
initial conditions$si(0)% $Ji j (0)% sampled independently a
follows:

Prob@si~0!5j i #5 1
2 ~11m0!, ~5!

Prob@Ji j ~0!5Jaj ij j #5r0~a!. ~6!

Since the initial conditions are uniform~i.e., independent of
the site indexi ), the statistical properties of our model r
main uniform at every later timet. We also remark that a
t50 both neurons and synapses are uncorrelated.

We study the model in the limitN→` with K large and
finite. It can be shown that in such a limit the neurons ne
t
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correlate@12#. Indeed theKt sites that belong to the tree o
ancestors of a given neuronsi are all different~this is true as
long ast! lnN). Also the correlations between synaptic va
ables can be neglected: the correlation between two syna
Ji j and Jik sharing a common site increases when they
simultaneously updated while it decreases when one ou
the two is updated. The probability for the simultaneous u
dating is of orderq2, while the probability for the single
updating is of orderq. Sinceq is of order 1/K, it follows
that, at least in the early stage, the synapses can be treat
uncorrelated. In the following, analyzing in particular th
casesn52 andn53, we will show that actually the corre
lation between synapses canalwaysbe neglected. We also
remark thatsj is independent ofJi j because there are n
loops in the tree of ancestors ofsi . Therefore neurons~as
well as synapses! can be treated as independent and ide
cally distributed stochastic variables.

We now introduce the order parameterm(t)5^ s̃ i(t)&
5(1/N)( i^ s̃ i(t)& for neurons and the probabilityr(a,t)
that J̃ i j (t) is equal toJa . We have, from Eqs.~5! and ~6!,
r(a,0)5r0(a) and m(0)5m0. The flow equation for
r(a,t) is easily found to be

r~a,t11!5(
a8

Taa8@m~ t !#r~a8,t !, ~7!

where then3n stochastic transition matrixT is tridiagonal
with the following structure:

T„m~ t !…5S 12a b 0 . . . 0

a 12q b . . . 0

. . . . . . . . . . . . . . .

0 . . . a 12q b

0 0 . . . a 12b

D , ~8!

wherea5(q/2)@12m2(t)# andb5(q/2)@11m2(t)#.
In order to calculate the flow equation for the order p

rameterm(t), we observe that the projection on$j% of local
field ~2! can be written as

h̃ i~ t !5j ihi~ t !5(
j

J̃ i j ~ t ! s̃ j~ t !5(
j

Ji j8 ~ t !, ~9!

where the variableJi j8 5 J̃ i j s̃ j is the contribution to the syn

aptic input from a single input neuron. The variableh̃ ~the
total synaptic input! is the sum ofK independent and iden
tically distributed stochastic variablesJ8. The probability
distribution forJ8 reads

r8~a,t !5Prob@Ji j8 ~ t !5Ja#

5 1
2 @11m~ t !#r~a,t !1 1

2 @12m~ t !#

3r~n112a,t !, ~10!

where the first term on the right-hand side~RHS! of Eq. ~10!

is the probability thats̃51 and J̃5Ja , the second term is
the probability that s̃521 and J̃52Ja . The stochastic
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variableh̃ i(t) can assume (n21)K11 possible discrete val
ues in@2K,K#; its distributionHt(a)5Prob@ h̃ i(t)5a# can
be calculated by performingK times the convolution of the
distribution ~10!. For example, in the casen52, we have

Ht~a!5S K

K2a

2
D r8~1,t !~K1a!/2r8~21,t !~K2a!/2. ~11!

It is now straightforward to evaluate, in the general case,
flow equation form(t) using Eqs.~3!:

m~ t11!5 (
a52K

K

Ht~a!tanh~ba!5^tanh~b h̃ !&Ht
. ~12!

Flow equations~7! and ~12!, with initial conditionsm0 and
r0(a), describe the coupled dynamics ofm(t) andr(a,t).

After this general introduction and the description of t
main dynamical equations, we will devote the next section
study the fixed points of the dynamics for our model. In S
III we will report the results obtained by simulating nume
cally the flow equations in the casesn52 andn53. In Sec.
IV it is shown that the correlations among synapses can
ways be neglected. In Sec. V we study the learning prop
ties of the network. In Sec. VI the simulations of an AN
with adapting synapses are studied and compared to
theory. Section VII summarizes the conclusions.

II. STATIONARY SOLUTIONS

Let us now discuss the stationary solutions of the fl
equations. First of all we observe that the invariant distrib
tion with respect to Eq.~7! is given by

rm~a!5
2m2

~11m2!n2~12m2!n ~12m2!a21~11m2!n2a.

~13!

We remark that the stationary distribution does not dep
on q. We callH(m)(a) the probability distribution ofh̃ cor-
responding torm . For stationary solutions the following
equation holds:

m5^tanh~b h̃ !&H~m!. ~14!

It can be shown thatm50 is always a stable solution for Eq
~14!, and it is unique for small values ofb ~high tempera-
ture!. As b increases, Eq.~14! displays a first-order transi
tion, i.e., forb.bc(K) two solutions withm.0 appear dis-
continuously, the one with largerm being locally stable for
variations in m. This solution corresponds to a state th
deviates only slightly from pattern$j%; m51 is a stationary
and stable solution only in the limitb→`. We have thus
shown that the model possesses a stable fixed point in
respondence to any pattern$j%. If the initial conditionsm0
andr0(a) are sufficiently polarized with respect to$j%, then,
by iterating the flow equations, the stable solutionms.0 is
asymptotically achieved, i.e.,
e

o
.
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r-
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lim
t→`

m~ t !5ms , lim
t→`

r~a,t !5rms
~a!. ~15!

In the case of a large number of connections~large K) a
useful approximation can be used. Since the local fieldh̃ i(t)
is the sum ofK independent and identically distributed st
chastic variables, we use the central limit theorem to
proximate it by a Gaussian random variable with mean a
variance given respectively by

m~ t !5Km~ t !^ J̃ ~ t !& ~16!

and

s2~ t !5K@^ J̃2~ t !&2^ J̃ ~ t !&2m2~ t !#. ~17!

The flow equation~12! can be approximated as follows:

m~ t11!5E dz

A2p
e2~1/2!z2

tanh$b@~m~ t !1s~ t !z#%.

~18!

In the zero-temperature limit (b→`) Eq. ~18! reads

m~ t11!5erfS m~ t !

s~ t ! D , ~19!

wherem/s may be seen as the signal-to-noise ratio~SNR!
for the synaptic input of a neuron.

III. ANALYSIS OF THE CASES n52 AND n53

In this section we study numerically the behavior of t
flow equations~7! and~18! in the casesn52 andn53. The
probability distribution for two-state synapses is determin
by its averageJ(t)5^ J̃ (t)& and flow equations reduce to

J~ t11!5~12q!J~ t !1qm2~ t !, ~20!

m~ t11!5E dz

A2p
e2~1/2!z2

tanh„b$KJ~ t !m~ t !

1AK@12J2~ t !m2~ t !#z%…. ~21!

The stationarity conditions are

J5m2, ~22!

m5E dz

A2p
e2~1/2!z2

tanh$b@Km31AK~12m6!z#%.

~23!

Equation~23! displays a first-order transition forb greater
than a critical coupling, which has the behaviorbc(K)
;2.017/K for largeK. Hence forb.bc Eqs.~20! and ~21!
have two stable fixed points, a fixed point withm.0 and the
trivial one. By numerical simulations we found that the r
currence equations~20! and~21! never show complex behav
ior and by iterating them, starting from any initial conditio
it always happens that one of the two stable fixed points
approached.
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It is interesting to compare the retrieval capability of o
neural network with adapting synapses to the case o
strongly diluted network with fixed synapses, where ea
neuron hasK random input sites, described by Eq.~21! with
J(t)5J0 for every t. The process of retrieval in our mode
will be referred to asadaptative retrieval~AR! whereas the
retrieval with fixed synapses will be calledfixed synapses
retrieval ~FSR!. We remark that FSR actually corresponds
the early stage of AR, due to the very low value ofq. In Fig.
1 we depicted the asymptotic valuem(`) of the order pa-
rameter versus the initial conditionJ0 for the two cases and
various temperatures. We see that in the case of AR a fi
order transition occurs; in other words, forJ0 greater than a
threshold valueJth , the nontrivial fixed point of Eq.~23! is
asymptotically achieved; on the other hand a second-o
transition occurs in the case of FSR. ForJ0 greater thanJth
andJ02Jth small, AR performs better than FSR. We o
serve that a threshold value exists also form0, i.e., for m0
smaller than a threshold valuemth ~numerically very small!,
the flow equations~20! and~21! lead to the trivial fixed point
even forJ051.

We remark that the change from second-order~fixed syn-
apses! to first-order transition~adapting synapses!, which we
found in our model, is similar to the crossover phenomen
for the case of the paramagnetic-ferromagnetic transit
which is observed in@7#, where the interaction dynamic
changes the transition to first order when the influence of
spins on the interaction dynamics is dominant with respec
the noise term.

Let us now consider the casen53, when synapses tak
values in$1,0,21%. Two independent parameters are need
in order to specify the distribution of the synapses; let
define r1(t)5r(1,t), r2(t)5r(21,t), and r0(t)5r(0,t).

FIG. 1. Numerical evaluation of the asymptotic order parame
vs the initial polarizationJ0 of the synapses, withK5100, q
50.01, n52 and three different values of the temperature. T
continuous line and the dotted one correspond respectively to
and FSR~see the definitions in the text!.
a
h

t-

er

,
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e
to
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s

The stationarity conditions can be computed in this case w
the results

r15
~11m2!2

31m4 , r05
12m4

31m4 , r25
~12m2!2

31m4 ,

~24!

m5E dz

A2p
e2~1/2!z2

tanh„b$Km~r12r2!

1AK@12r02m2~r12r2!2#z%…. ~25!

The same qualitative description of then52 case applies to
the behavior of the flow equations in this case. The critic
coupling has the behaviorbc(K);1.8/K for largeK. In Fig.
2 we depict, for three values of the temperature, the thresh
value of rD5r12r2 versusr0. The thresholdrD

th is such
that the nontrivial fixed point is achieved if the initial condi
tions satisfyrD.rD

th .

IV. THE SYNAPTIC CORRELATIONS

In this section we show that, during the time evolution o
the network, the correlations among the synapses can be
glected. This assumption is tested by taking into account
correlation between pairs of synapses sharing a common s
Consider the local fieldh̃ i acting on the neuronsi given by
Eq. ~9!. The mean and variance ofh̃ i are given by

m5K^ J̃ &m, ~26!

s25K~^ J̃2&2^ J̃ &2m2!1K~K21!m2C, ~27!

r,

e
R

FIG. 2. The threshold value ofrD is plotted vsr0 in the case
n53, K5100,q50.01 and with three different values of the tem
perature.
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56 4571STOCHASTIC LEARNING IN A NEURAL NETWORK . . .
whereC5^ J̃ i j J̃ ik&2^ J̃ i j & ^ J̃ ik& is the pair synaptic correla-
tion. The first term on the RHS of Eq.~27! is the variance of
the local field, which is computed as if the synapses we
uncorrelated.

In the n52 case we consider the probability distributio
for pairs of synapses$ J̃ i j , J̃ ik% sharing a common site, which
evolves according to a 434 transition matrix. After a little
algebra we obtain the flow equations forJ (5^ J̃ i j &
5^ J̃ ik&) andC:

J~ t11!5~12q!J~ t !1qm2~ t !, ~28!

C~ t11!5~12q!2C~ t !1q2@m2~ t !2m4~ t !#, ~29!

while Eq. ~18! can be used for the evolution of the orde
parameterm(t); the initial condition for the correlation is
C(0)50. Equation~29! has a clear meaning: the pair corre
lation does not change if the two synapses are not upda
@probability (12q)2#; it goes to zero if one out of the two is
updated@probability 2q(12q)#; it becomesm22m4 if both
synapses are updated~probability q2). We studied numeri-
cally Eqs.~28!, ~29!, and~18! and found that the second term
on the RHS of Eq.~27! is always very small compared to the
first term. In Fig. 3~a! we depict the time evolution of the
order parameter, for a particular set of initial conditions,
two cases: taking into account the pair correlations and n
The two curves are indistinguishable; the same behavior
observed for any choice of the initial conditions. In Fig. 3~b!

FIG. 3. ~a! The time evolution of the order parameter evaluate
by the flow equations that neglect the correlations and by the fl
equations that take into account the pair synaptic correlation, in
casen52: the two curves are indistinguishable. The initial cond
tions arem050.88,J050.55; K5100, q50.01, b50.03. ~b! We
depict, with the same initial conditions, the time evolution of th
two contributions to the variance of the local field~see the text!: the
contribution due to the synaptic correlations, i.e., (K21)m2C
~lower curve!, compared to the term that is computed as if th
synapses were uncorrelated, i.e., 12J2m2 ~upper curve!.
e

ed

t.
is

we depict, with the same set of initial conditions, the tim
evolution of the two contributions to the variance of the loc
field, given by Eq.~27!. The contribution due to the synapti
correlations is always very small and reaches a maxim
value during the retrieval process. The stationarity conditio
for Eqs.~28! and ~29! read:

J5m2, C5
q

22q
~m22m4!, ~30!

and, at leading order inK, the equation for the fixed points i

m5E dz

A2p
e2~1/2!z2

3tanhH bFKm31AKS 12m61
m42m6

2 D zG J
~31!

to be compared with the equation that is computed as if
synapses were uncorrelated, i.e., Eq.~23!. We see that the
distance between the nontrivial fixed points of Eqs.~31! and
~23! vanishes for largeK. Hence the synaptic correlation
can be neglected also with respect to the equilibrium pr
erties of the network.

We tested the assumption also in then53 case~see the
Appendix!. We find that also in this case the contribution
s2 due to the correlations is always very small and can
neglected.

V. THE LEARNING STAGE

The learning stage is characterized by the presence
external stimuli represented by local magnetic fields in E
~2!. We recall the results obtained in@11# about the capacity
of a stochastic learning network withq of orderAlnK/K and
with n arbitrary. Let us suppose that the network receives
uninterrupted flow of uncorrelated patterns to be learned

. . . ,$j%22 ,$j%21 ,$j%0 ,$j%1 ,$j%2 , . . . .

In @11# it is shown, by a signal-to-noise analysis, that t
network acts as a palympsest@14,15#, i.e., patterns learned
far in the past are erased by new patterns, and that the m
mum number of patterns that can be stored is proportiona
AK @16#.

In our caseq is of order 1/K and each pattern$j%p (p
50,61,62, . . . ) has to bepresented at least forl
5O(AK lnK) iterations in order to be stored. Let us co
sider, for example, the pattern$j%0, and let us sett50 in
correspondence of the first presentation of$j%0. Initially the
synapses have a completely random distribution with resp
to $j%0, i.e.,r(a,0)51/n. During the presentation of patter
$j%0 the synapses are polarized due to the action of ma
~8! with m51, because$s%5$j%0. Subsequently the networ
begins to learn other patterns and the synaptic distribu
becomes depolarized by the action of matrix~8! with m50.
After the presentation ofz other patterns the synaptic distr
bution is given by

r@ t5~z11!l #5Tq
zl ~m50!Tq

l ~m51!r~0!, ~32!

w
e
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where the dependence ofT on q has been made explicit
Incidentally we remark that during the learning stage
correlation among synapses is identically zero due to the6
symmetry. For fixedm andq of order 1/K we have

Tq
l 5Tl q1O~ l 2q2!5Tl q1OS lnK

K D ~33!

as can be easily checked by performing the Taylor expan
of the matrix Tq in the neighborhood ofq50. Therefore
rescaling the time by the factorl and changingq into q̃
5l q leads to the same problem studied in@11#. Hence we
conclude that our network is a palympsest and its capaci
proportional toAK.

VI. SIMULATIONS

Our theory works as long ast is small with respect to lnN,
so as to avoid the effects due to the neuronic correlations
order to build up finite-size networks, where the neuro
correlations can be neglected for longer times, and to test
dynamical equations, we adopt the following approach:
implement a model ofN neurons, where each neuron hasM
input neurons chosen at random (M!N). TheNM synapses
obey the stochastic learning rules and, for every neurosi
and for every timet, K input neurons are chosen at rando
among theM corresponding tosi and only thoseK inputs
contribute to the local field acting onsi at time t. This is a
generalization of our model~recovered whenK5M ) which
is ruled by the same dynamical equations. We implement
N510 000 network withM5200, K521 and two-states
synapses. The time evolution of the macroscopic parame
of the system is found to be in agreement with the theoret
estimate untilt;20. In Fig. 4 we depict the time evolution o
the order parameter and of the synaptic distribution and c
pare it with the theoretical estimate; the initial conditio
werem051 andJ050.3. The agreement with the theory h
been tested with many different initial conditions. We al
implemented a network withN510 000 andM5K521 but
the time evolution in this case was in agreement with
theory only for a few time steps.

VII. CONCLUSIONS

In this paper we have considered a neural network w
clipped synapses and stochastic learning rules whose le
ing capabilities have been studied in@11#. We extend the
analysis of this model and investigate the consequence
the synaptic dynamics in the process of retrieval. We fi
that, in order to preserve the associative capability of
system, the synaptic transition probabilityq must be very
small; moreover, for strong dilution, the dynamics of t
network can be analytically calculated because for very sm
values ofq the correlations among the synaptic variables c
be neglected. As to the learning properties, the network
as a palympsest and the maximum number of storable
terns coincides with the result obtained in@11#, the only dif-
ference being that a pattern has to be presented for m
iterations in order to be stored.

In this framework the two stages~computation and learn
ing! differ for the duration of the external stimulus corr
e
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sponding to a given pattern. If the pattern is presented for
sufficiently long time, the network stores it in the synapti
couplings. If the pattern~or a damaged version of it! is pre-
sented for few iterations, the dynamics of the network
capable of reconstructing the pattern provided it had be
learned previously~unless new external stimuli impinge on
the network during the retrieval!.

APPENDIX

We write here the flow equations, in then53 case, which
take into account the pair synaptic correlations. Let us co
sider the distribution of a pair of synapses$ J̃ i j , J̃ ik% sharing
a common site, which evolves according to a 939 transition
matrix. We define

r15Prob@ J̃ i j 51#5Prob@ J̃ ik51#,

r25Prob@ J̃ i j 521#5Prob@ J̃ ik521#,

r05Prob@ J̃ i j 50#5Prob@ J̃ ik50#,

r105Prob@ J̃ i j 51,J̃ ik50#5Prob@ J̃ i j 50, J̃ ik51#,

r125Prob@ J̃ i j 51, J̃ ik521#5Prob@ J̃ i j 521, J̃ ik51#,

r205Prob@ J̃ i j 521, J̃ ik50#5Prob@ J̃ i j 50, J̃ ik521#.

FIG. 4. Time evolution of the order parameter^s& and the mean

of the synapseŝJ̃ & in a ANN with two-states adapting synapses
The numerical results for̂s& (d) and ^J& (L) are averaged over
80 histories of a network withN510 000, M5200, K521, q
50.01 and zero temperature; the initial conditions arem051 and
J050.3. The theoretical estimate by the flow equations is repr
sented bys (^s&) and byn (^J&).
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Next, we have

^ J̃2&5r11r2 ,

^ J̃ &5r12r2 ,

C5^ J̃ i j J̃ ik&2^ J̃ i j &^ J̃ ik&

5r11r22r102r2024r122~r12r2!2.

The flow equations forr1,r2,r0 are given by Eq.~7!, while
the flow equation form(t) is Eq. ~18!. The other flow equa-
tions are
a

-

.

.

r10~ t11!5~a12a3!r10~ t !1~a22a31a42a5!r12~ t !

1~a42a2!r20~ t !1~a31a5!r1~ t !1a2r0~ t !,

~A1!

r12~ t11!5a3r10~ t !1~a11a21a31a5!r12~ t !

1a2r20~ t !1a5r0~ t !, ~A2!

r20~ t11!5~a52a3!r10~ t !1~a32a2!r12~ t !1~a1

2a2!r20~ t !1a3r0~ t !1~a21a5!r2~ t !,

~A3!

where a15(12q)2, a25 1
2 q(12q)(11m2), a35 1

2 q(1
2q)(12m2), a45 1

4 q2(113m2), anda55 1
4 q2(12m2).
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