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Stochastic learning in a neural network with adapting synapses
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We consider a neural network with adapting synapses whose dynamics can be analytically computed. The
model is made oN neurons and each of them is connecteKtanput neurons chosen at random in the
network. The synapses amnestate variables that evolve in time according to stochastic learning rules; a parallel
stochastic dynamics is assumed for neurons. Since the network maintains the same dynamics whether it is
engaged in computation or in learning new memories, a very low probability of synaptic transitions is assumed.
In the limit N— < with K large and finite, the correlations of neurons and synapses can be neglected and the
dynamics can be analytically calculated by flow equations for the macroscopic parameters of the system.
[S1063-651%97)08710-2

PACS numbdrs): 87.10+e, 05.20-y

I. INTRODUCTION finite and negative replica numbédescribing an overfrus-
trated systemhas been studied by Dotsenko, Franz, and
In the dynamics of attractor neural netwoi®sNNs) two ~ Mézard[8]. Caticha considered a spin model where the dis-
processes take place: the time evolution of the neuron stat@sder evolves on a time scale intermediate between the an-
and the change in strength of the connectitsymapsesbe- ~ nealed and quenched behavifs.
tween neurons. Most of the prior research has focused sepa- We consider here an ANN with asymmetric adapting syn-
rately on the first dynamical proceseetrieval of learned apses whose dynamics consists of a stochastic learning
pattern$ or the other(learning of patterns[1]. In this work ~ mechanisn{10,11; in particular we refer to Amit and Fusi
we deal with the problem of building up models where neu-11] for a discussion on the possible sources of stochasticity
rons and synapses maintain the same dynamics whether tHethe synaptic learning. We present a dynamical theory in
network is engaged in computation or in learning newterms of deterministic flow equations for macroscopic order
memories; the two staggsomputation and learningliffer ~ parameters, which holds if the connections are strongly di-
only for the presence of external stimuli. This problem isluted. For quenched synapses the dynamical approach is ex-
important for the description of trghort termmemory in the ~ act in the case of strong dilutidi2]; it may be mentioned,
human brain(see, e.g.[2]) and has been studied mainly in in passing, that recently Coolen and Sherrington described
the context of Hebbian learning with a decay tef@+-5:  dynamically the fully connected Hopfield modél3].
Shinomotd[3] presented a rule for the synaptic modification ~Our model is made oN neurons(Ising sping si(t)
whose stable solutions are the Hopfield couplifgls Dong {— 1.1, i=1,... N. For each neurors;, K input sites
and Hopfield[4] considered analog neurons in a determinis-j1(i), - - - ,jk(i) are chosen at random among tNesites,
tic network described by a system of differential equationsand NK synaptic interactiond;;(t) are introduced. We as-
and applied their model to the problem of the developmengsume that the synapses arestate variablesJ;je{1,(n

of synaptic connections in the visual cortex; D’Autilia and —3)/(n—1), ...,—1}. Let us calla the index identifying
Guerra[5] studied an ANN with adapting synapses in orderthe different values of the synapses, so thatl impliesJ
to model conditioned reflex and rhythm recognition. =1 anda=n impliesJ=—1; in general

A very interesting approach to the coupled dynamics of
fast spins and slow interactions, in a fully connected net- 3 :n+1—2a a=1 n 1)
work, has been proposed by Coolen, Penney, and Sher- @ n-1 ' e

rington [7]; in their model the interactions are assumed to
change adiabatically and the thermodynamic equilibriumThe dynamical rule for the evolution of the synapses is as-
corresponds to a system of averaged replicas, where the repdmed as follows. Each synaptic varialdle connectings;
lica number represents the ratio of the temperatures of theith one of its K input neurons grows by one unit B/(
spin and interaction systems. It is shown that the influence of-1), i.e.,J,—J,_1, with probabilityq if the products;s; of
the spins on the interaction dynamics can change the order tifie spins connected b¥; is positive; if such a product is
the phase transitions in the model. Moreover the case of aegative the synapse decreases by one dpit«J,. 1) with
the same probability. If a synapse is at one of the extreme
limits and should be pushed off, its value remains un-
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correlate[12]. Indeed theK! sites that belong to the tree of
hi(t) =20 Jj(1)s;(t) + Hi(1); (20 ancestors of a given neuranare all different(this is true as
. long ast<InN). Also the correlations between synaptic vari-
the sum is taken over thi input neurons and external ables can be neglected: the correlation between two synapses
stimuli are represented by local magnetic fieldls. There-  Jij andJj sharing a common site increases when they are
fore the rules for the parallel dynamics in our model are  Simultaneously updated while it decreases when one out of
the two is updated. The probability for the simultaneous up-
11 dating is of orderg?, while the probability for the single
si(t+1)=sgr(§+ Stanf ghi(t)]- ”i)' (3 updating is of ordenq. Sinceq is of order 1K, it follows
that, at least in the early stage, the synapses can be treated as
2 uncorrelated. In the following, analyzing in particular the
Jij(t+ 1) =3O+ ——7si(V)s;(H 6(a— 7)) casen=2 andn=3, we will show that actually the corre-
lation between synapses caiwaysbe neglected. We also
remark thats; is independent ofl;; because there are no
) loops in the tree of ancestors sf. Therefore neurongas
well as synapsesan be treated as independent and identi-
where 7; and 7;; are random numbers {10,1], and ¢ is the  cally distributed stochastic variables.

Heaviside function. _ _ We now introduce the order parameten(t)=(s;(t))
As to the value ofy, we assumg=O(1/K). This choice =(1/N)Ei(§i(t)) for neurons and the probability(a,t)

deserves a comment. It is knowh0,11] that if q is order ~ :
) . . .. that J;;(t) is equal toJ,. We have, from Eqs(5) and(6),
VINK/K or greater, then it takes only one iteration to imprint (2,0)=po(@) and m(0)=m,. The flow equation for

:cshe pattern co_rres_pondmg to a given neuronic state; since Hg?(“’t) is easily found to be
ynapses maintain the same dynamics during the retrieval

a previously learned pattern, such an occurrence would de-

stroy the associative capability of the network; therefore in pla,t+ 1)=E T, [M(t)]p(a’, 1), @)
the following we assume that is of order 1K. a’

o e e o Te N SOGhASHG ransiton a1 o
the dynamics drives the system towards one of the@n- with the following structure:

figurations satisfyingl;;=s;s; (separable configurationsif 1-a b 0

the initial configurations of neurons and synapses are com-

pletely disordered, then at late times the network converges a 1-q b e 0

to one state chosen among the separable configurations; in o L . L

other words the network spontaneously breaks the symmetry T(m(t))= . (8
among the separable configuratiof@s similar spontaneous T
symmetry breaking is discussed[#). If, on the other hand, 0 0 ce a 1-b
the initial conditions are sufficiently polarized with respect to
oo e o 1 P e MO Groa (g1 () andb— (@)

Our aim is to describe macroscopically the evolution of In order to calculate the flow equation for the order pa-

the system by flow equations for the macroscopic parametelrrémete'm(t)' we observe that the projection ¢g} of local

describing the state of neurons and synapses. Let us tak'gId (2) can be written as

H;=0 (no external stimuli on the networland consider an

arbitrary patterq ¢} for the neurons. We introduce the vari- hit)=&hi(t)= E 3ij(t)§j(t) = 2 3 (1), 9
abless;=¢&s; andJ;;=J;;&£; , which will be useful to mea- : :
sure the degree of polarization of neurons and synapses with ) , =~ o
respect to the patterf¢,}. The statistical ensembie we deal Where the variablg;; = Jj; s; is the contribution to the syn-
with consists of all the histories of the network with the aptic input from a single input neuron. The varialhie(the
initial conditions{s;(0)} {J;;(0)} sampled independently as total synaptic inpytis the sum ofk independent and iden-
follows: tically distributed stochastic variable¥'. The probability

distribution forJ’ reads

X
0 n—-1

1_‘Jij(t)+isi(t)sj(t)

Profs;(0)=&]= 7 (1+my), 5 , )
p'(a,t)=Pro Jj;(t)=J,]
Prol J;;(0) = J,&i€;1= po( ). (6)
i a1 = $[1+m()]p(at)+ 5 [1-m()]
Since the initial conditions are uniforfie., independent of
the site index), the statistical properties of our model re- Xp(nt+1l-a,t), (10)
main uniform at every later time We also remark that at . . .
t=0 both neurons an}(/j synapses are uncorrelated. where the first term on the rlghthand sideHS) of Eq. (10
We study the model in the limil—o with K large and IS the probability thats=1 andJ=J,, the second term is

finite. It can be shown that in such a limit the neurons nevethe probability thats=—-1 and J=-J,. The stochastic
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variableh;(t) can assumen(— 1)K + 1 possible discrete val- limm(t)=mg, limp(a,t) =pms(a). (15
ues in[ —K,K]; its distribution{,(a) =Proj h;(t)=a] can o e
be calculated by performing times the convolution of the

In the case of a large number of connectidtege K) a
distribution (10). For example, in the case=2, we have g armge K)

useful approximation can be used. Since the local fe(d)
K is the sum ofK independent and identically distributed sto-
chastic variables, we use the central limit theorem to ap-
Ho(a)=| k_a p! (L) K+a2pr(— 1 py(K-a2 (17) proximate it by a Gaussian random variable with mean and
- - variance given respectively by

2
t)=Km(t)(J(t 16
It is now straightforward to evaluate, in the general case, the #() M) (18
flow equation form(t) using Eqs.(3): and
a?(H) =K[(IZ(1) = (I ())’m*(1)]. (17)

K
m(t+1)= ZK Hy(a)tani(a)=(tanh(Bh));,. (12)
= The flow equation12) can be approximated as follows:

Flow equationg7) and (12), with initial conditionsm, and

. . dz
po(@), despnbe the c_oupled qynamlcsm(t) and_p(_a,t). m(t+1)= J _e_(1/2)22tan}’{ﬁ[(,u,(t)+O'(t)Z]}.
After this general introduction and the description of the V2
main dynamical equations, we will devote the next section to (18

study the fixed points of the dynamics for our model. In Sec. o

Il we will report the results obtained by simulating numeri- In the zero-temperature limitd— ) Eq. (18) reads

cally the flow equations in the cases-2 andn=3. In Sec.

IV it is shown that the correlations among synapses can al- m(t+ 1) =erf &) (19)
ways be neglected. In Sec. V we study the learning proper- o(t)

ties of the network. In Sec. VI the simulations of an ANN ) )

with adapting synapses are studied and compared to tHéhereu/o may be seen as the signal-to-noise rd&iR)
theory. Section VII summarizes the conclusions. for the synaptic input of a neuron.

Il. STATIONARY SOLUTIONS Ill. ANALYSIS OF THE CASES n=2 AND n=3

In this section we study numerically the behavior of the
Let us now discuss the stationary solutions of the flowflow equationg7) and(18) in the case®i=2 andn=3. The
equations. First of all we observe that the invariant distribuprobability distribution for two-state synapses is determined

tion with respect to Eq(7) is given by by its average7(t)=(J(t)) and flow equations reduce to

2m? Jt+1)=(1=q) J(t) +an?(t) (20

— _ m2ya—1 2\n—a ’
pm(a)_(1+m2)n_(1_m2)n(1 m ) (1+m ) .
(13 dz . >
m(t+1)=f—e W2Z%annB{K J(t)m(t)

We remark that the stationary distribution does not depend V2w
on g. We call’H(™(a) the probability distribution oh cor- +VK[1= ZOm2(0)12)). (21)
responding top,,. For stationary solutions the following
equation holds: The stationarity conditions are

m=(tanh( 8h))3,m. (14) J=m?, (22)

It can be shown than=0 is always a stable solution for Eq. _ [ 92 2 3
(14), and it is unique for small values @ (high tempera- m—J 5 © tani{ B[Km*+ VK (1-m%)z]}.

ture). As B increases, Eq(14) displays a first-order transi- (23)
tion, i.e., forB> B.(K) two solutions withm>0 appear dis-

continuously, the one with largen being locally stable for Equation(23) displays a first-order transition fg8 greater
variations inm. This solution corresponds to a state thatthan a critical coupling, which has the behaviBg(K)
deviates only slightly from patterf¢}; m=1 is a stationary ~2.017K for largeK. Hence forg> 8. Egs.(20) and(21)
and stable solution only in the limj—o. We have thus have two stable fixed points, a fixed point witit>0 and the
shown that the model possesses a stable fixed point in cotrivial one. By numerical simulations we found that the re-
respondence to any pattefd}. If the initial conditionsm,  currence equation®0) and(21) never show complex behav-
andpg(«) are sufficiently polarized with respect{é}, then, ior and by iterating them, starting from any initial condition,
by iterating the flow equations, the stable solutog>0 is it always happens that one of the two stable fixed points is
asymptotically achieved, i.e., approached.
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FIG. 1. Numerical evaluation of the asymptotic order parameter, FIG. 2. The threshold value gfy is plotted vsp® in the case
vs the initial polarization7, of the synapses, withiK =100, q n=3, K=100,9=0.01 and with three different values of the tem-
=0.01,n=2 and three different values of the temperature. Theperature.
continuous line and the dotted one correspond respectively to AR

and FSR(see the definitions in the text The stationarity conditions can be computed in this case with
the results
It is interesting to compare the retrieval capability of our
neural network with adapting synapses to the case of a (1+m?)2 1—m? (1—m?)2
strongly diluted network with fixed synapses, where each pt= 3 e p°=3+ 7 pfzﬁ,
neuron hak random input sites, described by Eg1) with m m m 24)
J(t)=J, for everyt. The process of retrieval in our model
will be referred to asadaptative retrievalAR) whereas the
retrieval with fixed synapses will be calldiked synapses dz (11222 L
retrieval (FSR. We remark that FSR actually corresponds to msze tan(B{Km(p™ —p~)
the early stage of AR, due to the very low valuegofin Fig.
1 we depicted the asymptotic value() of the order pa- +VK[1=p'—m?(p* —p7)%]2D). (25)

rameter versus the initial conditiaf, for the two cases and

va(;mus temperatures. _We Sﬁe that ('jn ﬂf]e case of A;]R a fIrStI'he same qualitative description of the=2 case applies to
order transition occurs; in other words, g greater than a ¢ pepavior of the flow equations in this case. The critical

threshold. value7th,.the nontrivial fixed point of Eq(293) is coupling has the behavigg.(K)~1.8K for largeK. In Fig.
asymptotically achieved; on the other hand a second-orde§ e gepict, for three values of the temperature, the threshold
transition occurs in the case of FSR. Fg@y greater than’, value of pp=p* —p~ versusp®. The thresholqog‘ is such

zgflvgotagttzstwgghﬁg Szlr;zrrg;is?set;elgfﬁ iFeSRl;o\rNg ob- that the nontrivial fixed point is achieved if the initial condi-
P 0 tions satisfypp>pl.

smaller than a threshold valumsy, (numerically very small
the flow equation$20) and(21) lead to the trivial fixed point
even for7,=1. IV. THE SYNAPTIC CORRELATIONS

We remark that the change from second-ordieed syn- In thi . h hat. during the fi luti ¢
apsegto first-order transitiorfadapting synapsgswhich we n this section we show that, during the time evolution o
the network, the correlations among the synapses can be ne-

found in our model, is similar to the crossover phenomenon, ) L SO
for the case of the paramagnetic-ferromagnetic transitiongleCted' This assumption is tested by taking into account the

which is observed if{7], where the interaction dynamics correlation between pajfs of synapses sharing a common site.
changes the transition to first order when the influence of th&onsider the local fieldh; acting on the neuros; given by
spins on the interaction dynamics is dominant with respect t&q. (9). The mean and variance bf are given by

the noise term.

Let us now consider the case=3, when synapses take
values in{1,0,— 1}. Two independent parameters are needed
in order to specify the distribution of the synapses; let us
define p™ () =p(11), p~ (1)=p(—11), and p°(t)=p(0yt). o?=K((3%)—(3)?’m?) +K(K—1)m?C, (27

m= K(j)m, (26)
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we depict, with the same set of initial conditions, the time
evolution of the two contributions to the variance of the local
field, given by Eq(27). The contribution due to the synaptic
correlations is always very small and reaches a maximum
value during the retrieval process. The stationarity conditions
for Egs.(28) and (29) read:

J=m?, C (m?>—m?%), (30)

= =g
and, at leading order iK, the equation for the fixed points is

dz

e—(l/z)z2
2w

xtan)'»{ﬁ Km3+ \/K(l—m6+m )z ]

to be compared with the equation that is computed as if the
synapses were uncorrelated, i.e., E2B). We see that the

m=

A mp
2

(31)

FIG. 3. (a) The time evolution of the order parameter evaluateddiS'[r'JmC‘f{bt"ltW":‘en the nontrivial fixed points Qf E@L) and
by the flow equations that neglect the correlations and by the flowi23) vanishes for largek. Hence the synaptic correlations
equations that take into account the pair synaptic correlation, in théan be neglected also with respect to the equilibrium prop-

casen=2: the two curves are indistinguishable. The initial con
tions aremy=0.88, J,=0.55; K=100,q=0.01, 3=0.03. (b) We

di- erties of the network.
We tested the assumption also in the 3 case(see the

depict, with the same initial conditions, the time evolution of the AppendiX. We find that also in this case the contribution to

two contributions to the variance of the local figkke the tejt the
contribution due to the synaptic correlations, i.el—(1)m2C

o? due to the correlations is always very small and can be
neglected.

(lower curve, compared to the term that is computed as if the

synapses were uncorrelated, i.es J2m? (upper curvg

whereC=(J;;Ji)—(J;;) (Ji) is the pair synaptic correla-
tion. The first term on the RHS of EQ7) is the variance of

V. THE LEARNING STAGE

The learning stage is characterized by the presence of
external stimuli represented by local magnetic fields in Eq.

uncorrelated.

of a stochastic learning network withof order yInK/K and

In then=2 case we consider the probability distribution With n arbitrary. Let us suppose that the network receives an

for pairs of synapse§J;; , J;} sharing a common site, whic
evolves according to aX4 transition matrix. After a little
algebra we obtain the flow equations fQf (:(j‘ij>
=(J,)) andC:

Jt+1)=(1-q) J(t)+qmi(t), (28)

Ct+1)=(1-a)*C(H)+g?m*()—m* ()], (29

h uninterrupted flow of uncorrelated patterns to be learned:

ol 28 -1 {8o {1 {2 -

In [11] it is shown, by a signal-to-noise analysis, that the
network acts as a palympsdd#4,15, i.e., patterns learned
far in the past are erased by new patterns, and that the maxi-
mum number of patterns that can be stored is proportional to
JK [16].

In our caseq is of order 1K and each patterfié}, (p

while Eq. (18) can be used for the evolution of the order =0.=1,=2,...) has to bepresented at least for"
parametem(t); the initial condition for the correlation is =O(VK InK) iterations in order to be stored. Let us con-
C(0)=0. Equation(29) has a clear meaning: the pair corre- sider, for example, the pattefig}o, and let us set=0 in

lation does not change if the two synapses are not upd

ategprrespondence of the first presentatiod &f,. Initially the

[probability (1—q)?]; it goes to zero if one out of the two is Synapses have a completely random distribution with respect

updated probability 2q(1—q)]; it becomesm?—m?* if both

synapses are updatégdrobability g%). We studied numeri-

to {¢}o, i.e., p(a,0)=1/n. During the presentation of pattern
{&}o the synapses are polarized due to the action of matrix

cally Egs.(28), (29), and(18) and found that the second term (8) with m=1, becaus¢s}={£},. Subsequently the network
on the RHS of Eq(27) is always very small compared to the begins to learn o_ther patterns a_md the synaptic distribution
first term. In Fig. 3a) we depict the time evolution of the becomes depolarized by the action of mat8x with m=0.

order parameter, for a particular set of initial conditions,
two cases: taking into account the pair correlations and

The two curves are indistinguishable; the same behavior is

observed for any choice of the initial conditions. In Figh)3

inAfter the presentation of other patterns the synaptic distri-
nobution is given by

plt=(z+1)/1=Tg§ (M=0)Tg(m=1)p(0), (32
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where the dependence a@f on g has been made explicit.
Incidentally we remark that during the learning stage the
correlation among synapses is identically zero due totthe opz2s2eSESt

°°°°°°

m 3

symmetry. For fixedn andq of order 1K we have 5 s

Ink s 0.8 j
x/ ® a

0.6 |—

T=T, q+O( 29} =T 4+0

as can be easily checked by performing the Taylor expansic [ .
of the matrixT, in the neighborhood ofj=0. Therefore L e
rescaling the time by the factof and changingy into q
=/q leads to the same problem studied[irl]. Hence we R I
conclude that our network is a palympsest and its capacity i et
proportional toK. b

VI. SIMULATIONS =

Our theory works as long dss small with respect to I, ol o Lo L e by )
so as to avoid the effects due to the neuronic correlations. | 0 20 40 60 80 100
order to build up finite-size networks, where the neuronic
correlations can be neglected for longer times, and to test our
dynamical equations, we adopt the following approach: we
implement a model oN neurons, where each neuron s
input neurons chosen at rando €N). TheNM synapses
obey the stochastic learning rules and, for every newon
and for every time, K Input neurons are chosen at random _ 4 01 and zero temperature; the initial conditions @kg=1 and
among theM correspon.dlng tc;i and Only_ thoseK '_nPUtS Jo=0.3. The theoretical estimate by the flow equations is repre-
contribute to the local field acting og at timet. Thisis @  gapteq byO ({s)) and byA ((3)).
generalization of our moddtecovered wheilkK =M) which

is ruled by the same dynamical equations. We implemented gyonding to a given pattern. If the pattern is presented for a
N=10000 network withM=200, K=21 and two-states gficiently long time, the network stores it in the synaptic

synapses. The time evolution of the macroscopic parametetguplings. If the patterior a damaged version of)its pre-

of the system is found to be in agreement with the theoreticadented for few iterations, the dynamics of the network is
estimate untit~20. In Fig. 4 we depict the time evolution of capable of reconstructing the pattern provided it had been

the order parameter and of the synaptic distribution and comearned previouslyunless new external stimuli impinge on
pare it with the theoretical estimate; the initial conditionsthe network during the retrieval

weremy=1 andJ,=0.3. The agreement with the theory has
been tested with many different initial conditions. We also
implemented a network withi=10 000 andV =K =21 but

the time evolution in this case was in agreement with the We write here the flow equations, in the=3 case, which

FIG. 4. Time evolution of the order paramets} and the mean

of the synapse{j) in a ANN with two-states adapting synapses.
The numerical results fofs) (@) and(J) (<) are averaged over
80 histories of a network witiN=10 000, M =200, K=21, q

APPENDIX

theory only for a few time steps. take into account the pair synaptic correlations. Let us con-
sider the distribution of a pair of synapsgs; , J;} sharing
VIl. CONCLUSIONS a common site, which evolves according to’d 9 transition

In this paper we have considered a neural network Withmatnx. We define

clipped synapses and stochastic learning rules whose learn-
ing capabilities have been studied [ihl]. We extend the p*=Prob[ J;;=1]=Prob{ J;=1],
analysis of this model and investigate the consequences of
the synaptic dynamics in the process of retrieval. We find _ _
that, in order to preserve the associative capability of the p~=Prob[ J;;=—1]=Prob[ Jjy=—1],
system, the synaptic transition probabiliy must be very
small; moreover, for strong dilution, the dynamics of the
network can be analytically calculated because for very small
values ofg the correlations among the synaptic variables can
be neglected. As to the Iearmn_g properties, the network acts pto= Prob[jij :1:]‘“(:0]: Prob[jij =0.jik=1],
as a palympsest and the maximum number of storable pat-
terns coincides with the result obtained[ ], the only dif-
ference being that a pattern has to be presented for manyp+‘=Prob['3ij=1,'3ik=—1]=Prob['3ij= -1.3,,=1],
iterations in order to be stored.

In this framework the two stagésomputation and learn- _ _ _ _
ing) differ for the duration of the external stimulus corre- p*°=Prob[J”-= —1,Jy=0]=Prob{ J;;=0,J;=—1].

p0: PrOb[jij = 0] = PrOH:jik: O],



Next, we have
(3%=p.+p_,
Q)=pi—p-,
C=(J;Ji) = (Ti)(Ti)
=pt+p —p0=p 0=4pT T —(pT—p)%

The flow equations fop™,p~, p° are given by Eq(7), while
the flow equation fom(t) is Eq. (18). The other flow equa-
tions are
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pot+1)=(a;—as)p (t)+(ay—astas—as)p” ()
+(ag—ap)p~ (1) +(agtag)p (1) +a’(t),
(A1)
p T (t+ ) =asp (t) +(aytaytaztas)p” (1)
+app () +asp°(t), (A2)
p (t+1)=(as—ag)p () +(az—a)p () +(ay
—ap)p~(t) +agp’(t) +(ax+as)p (1),
(A3)

where a;=(1-0)% a,=3q(1-q)(1+m?), az=3q(1
—a)(1-m?), a,=30*(1+3m?), andas=3g*(1—m?).
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